Worksheet for 2021-09-08

Conceptual questions

Question 1. See the back of this handout.

Computations

First, some questions on Chapter 12.
Problem 1. Are there any vectors \mathbf{v} such that $\langle 1,2,1\rangle \times \mathbf{v}=\langle 3,1,-5\rangle$? If so, find all of them. If not, explain why not.
Then do the same question, but for $\langle 1,2,1\rangle \times \mathbf{v}=\langle 3,1,5\rangle$.
Problem 2. Let L_{1} be the line passing through $A(1,-2,4)$ and $B(2,1,3)$, and let L_{2} be the line passing through $C(0,3,-3)$ and $D(2,4,1)$.

Are L_{1}, L_{2} parallel, skew, or intersecting? If they intersect, where do they intersect? If not, how far apart are they?
The next ones introduce some $\$ 13.2$ content into the mix.
Problem 3. Find the point where the curves $\mathbf{r}_{1}(t)=\left\langle 2 t, 2-2 t, 3+t^{2}\right\rangle$ and $\mathbf{r}_{2}(t)=\left\langle 6-2 t, 2 t-4, t^{2}\right\rangle$ intersect. Then compute the angle formed by the two curves at their point of intersection.

Problem 4. Let $\mathbf{r}_{1}(t)$ be as in the preceding problem, and let H be the plane $x+y-2 z+6=0$. The curve given by \mathbf{r}_{1} intersects H twice. Find these two points, and determine the angle at which the curve meets the plane at each point.

The following are solutions to the problem
"Find the distance d between the point $P(1,-2,2)$ and the line $\mathbf{r}(t)=\langle 3+3 t, 2-t, 5 t\rangle$."
Figure out what is happening in each one.
(a) Solution 1:

$$
\begin{aligned}
D^{2} & =(2+3 t)^{2}+(4-t)^{2}+(5 t-2)^{2} \\
& =35 t^{2}-16 t+24 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(D^{2}\right) & =70 t-16=0 \\
t & =8 / 35 \\
d & =D_{\min }=\sqrt{35(8 / 35)^{2}-16(8 / 35)+24}=2 \sqrt{194 / 35}
\end{aligned}
$$

(b) Solution 2:

$$
\begin{aligned}
3(x-1)-(y+2)+5(z-2) & =0 \\
3 x-y+5 z-15 & =0 \\
3(3+3 t)-(2-t)+5(5 t)-15 & =0 \\
t & =8 / 35 \\
d & =\sqrt{(3+3(8 / 35)-1)^{2}+(2-(8 / 35)+2)^{2}+(5(8 / 35)-2)^{2}}=2 \sqrt{194 / 35 .}
\end{aligned}
$$

(c) Solution 3:

$$
\begin{aligned}
\langle 1,-2,2\rangle-\langle 3,2,0\rangle & =\langle-2,-4,2\rangle \\
\langle-2,-4,2\rangle \times\langle 3,-1,5\rangle & =\langle-18,16,14\rangle \\
|\langle-18,16,14\rangle| & =2 \sqrt{194} \\
|\langle 3,-1,5\rangle| & =\sqrt{35} \\
d & =2 \sqrt{194 / 35} .
\end{aligned}
$$

(d) Solution 4:

$$
\begin{aligned}
\langle 1,-2,2\rangle-\langle 3,2,0\rangle & =\langle-2,-4,2\rangle \\
(\langle 3,-1,5\rangle \times\langle-2,-4,2\rangle) \times\langle 3,-1,5\rangle & =\langle 94,132,-30\rangle=2\langle 47,66,-15\rangle \\
\frac{\langle 47,66,-15\rangle \cdot\langle-2,-4,2\rangle}{|\langle 47,66,-15\rangle|} & =-388 / \sqrt{6790} \\
d & =|-388 / \sqrt{6790}|=2 \sqrt{194 / 35} .
\end{aligned}
$$

(e) Solution 5:

$$
\begin{aligned}
\langle 2+3 t, 4-t, 5 t-2\rangle \cdot\langle 3,-1,5\rangle & =0 \\
35 t-8 & =0 \\
t & =8 / 35 \\
d & =\sqrt{(3+3(8 / 35)-1)^{2}+(2-(8 / 35)+2)^{2}+(5(8 / 35)-2)^{2}}=2 \sqrt{194 / 35}
\end{aligned}
$$

(f) Solution 6:

$$
\begin{aligned}
\langle 1,-2,2\rangle-\langle 3,2,0\rangle & =\langle-2,-4,2\rangle \\
\frac{\langle 3,-1,5\rangle \cdot\langle-2,-4,2\rangle}{\langle 3,-1,5\rangle \cdot\langle 3,-1,5\rangle}\langle 3,-1,5\rangle & =\frac{8}{35}\langle 3,-1,5\rangle \\
\langle-2,-4,2\rangle-\frac{8}{35}\langle 3,-1,5\rangle & =\left\langle-\frac{94}{35},-\frac{132}{35}, \frac{6}{7}\right\rangle \\
\left|\left\langle-\frac{94}{35},-\frac{132}{35}, \frac{6}{7}\right\rangle\right| & =2 \sqrt{194 / 35 .}
\end{aligned}
$$

